
u-1

A General Method Based on Harmonic Balance Techniques
to Simulate Noise in Free Running Oscillators

Werner Anzilll and Peter Russerl’2

1 Technische Universitat Miinchen, Lehrstuhl fur Hochfrequenztechnik,

Arcisstra13e 21, W–8000 Miinchen 2, Germany

2 Ferdinand–Braun–Institut fiir Hochstfrequenztechnik

Rudower Chaussee 5, 0–1199 Berlin, Germany

Abstract

A new approach using perturbation theory for simulating the

noise behavior in free running microwave oscillators based on

a piecewise harmonic balance technique is outlined and ap-

plied to a planar integrated microwave oscillator at 14 GHz.

A single-sideband phase noise of -90 dBc/Hz at an offset

frequency of 100 kHz was measured. Simulated and mea-

sured single–sideband phase noise agree within the accuracy

of measurements. The method is neither limited to certain

circuit topologies nor to certain nature of noise sources.

1. Int roduct ion

The noise behavior is besides the signal properties essential

for the design of microwave oscillators. While the determi-

nation of the signal behavior of oscillators is state of the art

[1,2,3,4], this is not the case if the noise sources are taken

into account.

We propose a new approach based on a piecewise harmonic

balance technique to calculate the single-sideband phase

noise of oscillators which is neither limited to a certain kind

of topology of the circuit nor to certain nature of noise

sources. In oscillators of technical interest the noise sources

are small compared with the signals. Therefore the system

of equations is linearized around the steady state. Due to

the lack of phase reference in oscillators the resulting Jaco-

bian is singular at the steady state and ill-conditioned for a

small frequency deviation from the carrier frequency where

we want to know the phase noise. We overcome this problem

by using an eigenvalue decomposition of the Jacobian where

the small eigenvalue due to the ill–condition of the matrix is

taken into account. A simple equation for the simulation of

the single–sideband phase noise L(~~ ) can be derived which

allows to compute L(~m ) in a numerically stable way.

2. Method of the Noise Analysis

As usual for the piecewise harmonic balance method the cir-

cuit is divided into a nonlinear and a linear sub circuit. The

state variables in the nonlinear subcircuit and the voltages

at the common ports, denoted with U, are determined so

that Kirchhoff’s current law (KCL) is fulfilled.

F(UO, wo) = O (1)

Taking the noise sources into account, which are small com-

pared with the signals, the voltages at the ports, the state

variables of the nonlinear subcircuit and the frequency of

oscillation vary only by a small value from the steady state,

UT(;) = u}(w)+ 15UT(U);w= bJo+ Wm (2)

II L5UT(W)[1 < IIUj(cd)[1; L%<<q.

Thus the system of the nonlinear equations can be linearized

around the steady state.

J(U}, w)tiUT + G(U~)N~ = O (3)

~F(UT, w)
with J(U$, W) ~ ~uT IUT=U] (4)

The matrix J(U~, w) represents the Jacobian and the matrix

G(U~) denotes the contributions of the noise sources NT in

each KCL equation. The index T denotes the time windowed

signals as amplitude spectra of random signals may only be

defined for time limited probes of the signals [5]. We use

an ansatz where all Fourier coefficients and the frequency

of oscillation are perturbed. Therefore all noise processes

including the upconversion of 1/f m noise sources and the

AM to PM conversion are taken into account to calculate

the single-sideband phase noise.

In the vicinity of the carrier frequency, where the singl~

sideband phase noise is of interest, the linear system of equa-

tions is ill–conditioned. This results from a singular Jacobian

at the steady state and due to the small frequency deviation

fm of the carrier frequency the deviations of the matrix ele-

ments are small and the condition number remains high [6].

In the vicinity of the carrier frequency means a frequency de-

viat ion of about 100 Hz to 10 MHz from the carrier frequency.

Considering e.g. a 10 GHz oscillator this is a deviation of only

10-s to 10-3 times the frequency of oscillation. To overcome

this problem the system of equations is linearized with re-

spect to the frequency and an eigenvalue decomposition of

the Jacobian is used. Thus the complete correlation spectra

can be calculated in a numerically stable way.

J(U~, w) =

with JW(U}, Uo) E

J(U~, wo) + w~ . JW(U], UII), (5)

‘Jyy Iw=w (6)
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The left- and right-sided eigenvectors of the unperturbed Ja-

cobian J(U}, LOO) are denoted with Vj and W; respectively.

{

1
Vi Wi = &j with : 15~3= ~

i=j

i#~
(7)

The eigenvalue of the unperturbed Jacobian which is zero

is denoted with Al and the corresponding eigenvectors with

VI and WI. It can be shown that the eigenvector WI is

determined by the steady state, WI = juoKU$, where K is

a diagonal matrix consisting of the number of each harmonic.

Transforming WI in the time domain shows that WI(t) is the

tangent vector to the steady state U“(t). A two dimensional

phase space with a limit cycle and a possible configuration

of the eigenvectors at one time point is depicted in fig. 1.
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Figure 1: Two dimensional phase space with a limit cycle

and eigenvectors vi(t) and Wi(t).

The eigenvectors Wi are a base of the phase space and due

to equation (7) a multiplication of V~ with a vector within

the phase space is a projection onto the eigenvector WI and

therefore to the tangent vector of the steady. That means,

the projection operator WIV~ applied to a vector named

z = ~~1 aiW, results in a vector tangential to the limit

cycle with a length of the coefficient al. The perturbation

of the eigenvalue Al = O, denoted with 6AI, is expressed

with terms up to the first order of the frequency deviation

w ~ = 2Tfm.

(5Al = 2mf~V;Ju(U~, 27r.fo).j2rr.foKTJ$ (8)

The inverse of the Jacobian J(U$, 2~~o) is represented by

the eigenvalues and the left– and right–sided eigenvectors.

(9)

Using the inverse of the perturbed Jacobian with the per-

turbed eigenvalues and eigenvectors the voltage fluctuations

and thus the correlation spectra can be calculated. Taking

only the term with the major contribution to the correlation

spectra into account, that is the term with the small eigen-

value c$J1 and the corresponding eigenvectors VI and WI,

we derive a simple equation for the single–sideband phase

noise L(~m).

/
v;ca~(.fo + fm)vl

‘(~~) = (2&2 “ [V:Jw(UO, 27r~o)KU012
(lo)

The derivation of this equation is demonstrated in detail

in [7,8] based on a nodal oriented harmonic balance tech-

nique. The correlation spectra of the noise sources mul-

tiplied with the matrix G(U~) are denoted by the ma-

trix CGN (~o + ~m) = G(U!-)@’(~0 + ~w)G+(U!). VI iS

the solution of a homogeneous linear system of equations,

J+ (U$, 2m~o)Vl = O, which can be obtained very easily

with a standard LU-deconlposition of the Jacobian. The

derivative of the Jacobian with respect to the frequency

Jw(UO, 2w~O) can be calculated numerically as we will show

in our example. The denominator of the second term is con-

stant and needs to be calculated only once. The numerator

consists of the correlation spectrum of the noise sources mul-

tiplied with the vector V: from the left side and with VI

from the right side. As we already described, this multiplica-

tion is a projection of all the noise sources of the phase space

onto the tangent vector to the steady state. That means the

vector VI filters the contributions of the noise sources which

are tangential to the steady state and therefore induce the

phase noise.

This method results in a complete calculation of the phase

noise of free runing oscillators, where all effects of the har-

monic signals mixed with the noise sources and the non sta-

tionarit y of noise sources are taken into account [9].

3. Simulation and Measurement of the
Single–Sideband Phase Noise of a Mi-
crowave Oscillator at 14 GHz

This new method is applied to a planar [10] integrated mi-

crowave oscillator at 14 GHz with a GaAs MESFET. The

equivalent circuit of the MESFET (fig. 2) was obtained by

S–parameter measurements at several bias points.

Figure 2: Equivalent circuit of the GaAs MESI?ET NE71O.
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A modified SPICE model [11,12] was used to characterize

the nonlinearities of the used MESFET. The white noise

sources are thermal noise sources of the losses or shot noise

sources of the internal diodes of the transistor. The NF–

noise power was measured for several bias voltages and a

1/f “–noise source was modelled. The measured NF–noise

power is depicted in fig. 3 for a voltage of -0.7 V between

gate and source and 3.0 V between drain and source.
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Figure 3: NF-noise measurement with UGS = –0.7 V and

UDS = 3.0 V.

The correlation spectrum of the l/~” -noise source is given

by

@ = C(UG,S, UDS’) . (lOkHz)a

Ifmle “
(11)

The function C(UGS,UD,S)denotes the spectral noise power at

a frequency of 10 kHz in dependence of the gat e–source and

the drain–source voltage. The exponent a was obtained by

averaging the slope of the measured baseband noise between

lkHz and 100 kHz over several bias points.

The linear circuit was designed with microstrip lines for a

frequency of oscillation at 14 GHz. The designed circuit is

depicted in fig. 4.
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Figure 4: The oscillator circuit.

A photography of the oscillator is shown in fig. 5.

Figure 5: Photography of the oscillator.

The spectrum of the output power measured with the spec-

trum analyzer HP71OOO is shown in fig. 6 with a maximum

power of 12.85 dBm at 14,2 GHz. A 10 dB attenuator was

used at the input port of the spectrum analyzer.
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Figure 6: The spectrum of the oscillator.

The equivalent noise sources at the ports were simulated with

the linear network analysis program SANA [13]. Hence the

correlation matrices of all noise sources are known. By solv-

ing Kirchhoffs current law in order to obtain the system of

equations the matrix G(Uf) is automatically obtained if the

noise sources are taken into account in the equivalent circuit.

The vector VI is calculated by solving the linear system of

equations J+VI = O with a standard LU–decomposition.
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As the numerical differentiation of the Jacobian with re- . - - -

spect to the frequency is not sensitiv to the choice of the

frequency shift a simple numerical differentiation algorithm

can be used. The noise power of the oscillator was measured

with the noise measurement system HP3048 from Hewlett

Packard by using the frequency discriminator method. We

obtain a single–sideband phase noise L(~~) of -90 dBc/Hz at

f~ = 100 kHz. The simulated and measured single-sideband

phase noise is depicted in fig. 7 where only one harmonic was

taken into account to simulate L(j~).
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Figure 7: Measured and simulated single–sideband phase

noise L(~~).

At small frequency deviations the single–sideband phase

noise L(~~ ) decreases with 33 dB per decade due to the mod-

elled factor a = 1.3 oft he 1 /~a noise source. L(jm ) decreases

with 20 dB per decade due to the white noise sources for a

frequency deviation greater than 1 MHz. The deviation of

the simulated and the measured single–sideband phase noise

is under 5 dB over the whole measured frequency range from

1 kHz to 10 MHz. Another important feature of our method

is the low numerical effort to calculate the noise behavior of

oscillators. A HP9000 workstation needs just about 6 sec-

onds to calculate 50 points of the single–sideband phase noise

without any optimization done to minimize the computation

time.

3. Conclusion

We demonstrated a new approach based on a piecewise har-

monic balance technique to simulate the single–sideband

phase noise in free running microwave oscillators. The

method was applied to a planar integrated microwave oscilla-

tor at 14 GHz. A single–sideband phase noise of -90 dBc/Hz

at an offset frequency of 100 kHz was obtained by using only

microst rip lines at the gate and source as resonators. The

difference of the simulated and measured single-sideband

phase noise lies within the accuracy of measurements over

the whole measured frequency range bet ween 1 kHz and 10

MHz. The method proved to be a fast, reliable and numeri-

cally stable tool for the design of microwave oscillators.
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